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Abstract
We express the averages of products of characteristic polynomials for random
matrix ensembles associated with compact symmetric spaces in terms of Jack
polynomials or Heckman and Opdam’s Jacobi polynomials depending on the
root system of the space. We also give explicit expressions for the asymptotic
behavior of these averages in the limit as the matrix size goes to infinity.

PACS numbers: 02.10.Yn, 02.30.Gp
Mathematics Subject Classification: 15A52, 33C52, 05E05

1. Introduction

In recent years, there has been considerable interest in the averages of the characteristic
polynomials of random matrices. This work is motivated by the connection with Riemann
zeta functions and L-functions identified by Keating and Snaith [KS1, KS2]. The averages of
the characteristic polynomials in the cases of compact classical groups and Hermitian matrix
ensembles have already calculated (see [Me] and references in [BG]). In these studies, Bump
and Gamburd [BG] obtain simple proofs for the cases corresponding to compact classical
groups by using symmetric polynomial theory. Our aim in this paper is to use their technique
to calculate averages of the characteristic polynomials for random matrix ensembles associated
with compact symmetric spaces.

We deal with the compact symmetric spaces G/K classified by Cartan, where G is a
compact subgroup in GL(N, C) for some positive integer N and K is a closed subgroup of G.
Assume G/K is realized as a subspace S in G, i.e., S � G/K , and the probability measure
dM on S is then induced from G/K . We call the probability space (S, dM) the random matrix
ensemble associated with G/K .

For example, U(n)/O(n) is the symmetric space with a restricted root system of type A
and is realized by S = {M ∈ U(n)|M = MT}. Here MT stands for the transposed matrix
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of M while U(n) and O(n) denote the unitary and orthogonal group of matrices or order n,
respectively. The induced measure dM on S satisfies the invariance d(HMH T) = dM for any
H ∈ U(n). This random matrix ensemble (S, dM) is well known as the circular orthogonal
ensemble (COE) (see, e.g., [Dy, Me]).

We also consider the classical compact Lie groups U(n), SO(n) and Sp(2n). Regarding
these groups as symmetric spaces, the random matrix space S is just the group itself with its
Haar measure.

The compact symmetric spaces studied by Cartan are divided into A and BC type main
branches according to their root systems. There are three symmetric spaces of type A,
with their corresponding matrix ensembles called circular orthogonal, unitary and symplectic
ensembles. For these ensembles, the probability density functions (pdf) for the eigenvalues
are proportional to

�Jack(z; 2/β) =
∏

1�i<j�n

|zi − zj |β,

with β = 1, 2, 4, where z = (z1, . . . , zn), with |zi | = 1, denotes the sequence of eigenvalues of
the random matrix. We will express the average of the product of characteristic polynomials
det(I + xM) for a random matrix M as a Jack polynomial ([Mac], chapter VI-10) of a
rectangular-shaped Young diagram. Jack polynomials are orthogonal with respect to the
weight function �Jack. Our theorems are obtained in a simple algebraic way and contain
results given in [KS1].

For compact symmetric spaces of type BC root systems, the corresponding pdf is given
by

�HO(z; k1, k2, k3) =
∏

1�i<j�n

∣∣1 − ziz
−1
j

∣∣2k3 |1 − zizj |2k3 ·
∏

1�j�n

|1 − zj |2k1
∣∣1 − z2

j

∣∣2k2
.

Here the ki’s denote multiplicities of roots in the root systems of the symmetric spaces. For
example, the pdf induced from the symmetric space SO(4n + 2)/(SO(4n + 2) ∩ Sp(4n + 2))

is proportional to �HO
(
z; 2, 1

2 , 2
)
. For this class of compact symmetric spaces, Opdam and

Heckman’s Jacobi polynomials ([Di, HS]), which are orthogonal with respect to �HO, will
play the same role as Jack polynomials for type A cases. Namely, we will express the
average of the product of characteristic polynomials det(I + xM) as the Jacobi polynomial of
a rectangular-shaped diagram.

This paper is organized as follows. Our main results, which are expressions for the
averages of products of characteristic polynomials, will be given in section 6. As described
above, the symmetric spaces corresponding to the two root systems, types A and BC, will be
discussed separately. For type A spaces, we use Jack polynomial theory. These discussions
can be generalized to Macdonald polynomials. Thus, after preparations in section 2, we
give some generalized identities involving Macdonald polynomials and a generalization of the
weight function �Jack in sections 3 and 4. In particular, we obtain q-analogues of Keating and
Snaith’s formulae [KS1] for the moments of characteristic polynomials and a generalization
of the strong Szegö limit theorem for Toeplitz determinants. These identities are reduced
to characteristic polynomial expressions for symmetric spaces of the A-type root system in
sections 6.1–6.3. On the other hand, for type BC spaces, we employ Opdam and Heckman’s
Jacobi polynomials. We review the definition and several properties of these polynomials in
section 5, while in sections 6.4–6.12 we apply them to obtain expressions for the products of
characteristic polynomials of random matrix ensembles associated with symmetric spaces of
type BC.
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2. Basic properties of Macdonald symmetric functions

We recall the definition of Macdonald symmetric functions (see [Mac, chapter VI] for details).
Let λ be a partition, i.e., λ = (λ1, λ2, . . .) is a weakly decreasing ordered sequence of non-
negative integers with finitely many nonzero entries. Denote by �(λ) the number of nonzero
λj and by |λ| the sum of all λj . These values �(λ) and |λ| are called the length and weight of λ

respectively. We identify λ with the associated Young diagram {(i, j) ∈ Z2|1 � j � λi}. The
conjugate partition λ′ = (λ′

1, λ
′
2, . . .) is determined by the transpose of the Young diagram

λ. It is sometimes convenient to write this partition in the form λ = (1m1 2m2 · · ·), where
mi = mi(λ) is the multiplicity of i in λ and is given by mi = λ′

i − λ′
i+1. For two partitions λ

and µ, we write λ ⊂ µ if λi � µi for all i. In particular, the notation λ ⊂ (mn) means that λ

satisfies λ1 � m and λ′
1 � n. The dominance ordering associated with the root system of type

A is defined as follows: for two partitions λ = (λ1, λ2, . . .) and µ = (µ1, µ2, . . .),

µ �A λ ⇔ |λ| = |µ| and

µ1 + · · · + µi � λ1 + · · · + λi for all i � 1.

Let q and t be real numbers such that both |q| < 1 and |t | < 1. Put F = Q(q, t) and
Tn = {z = (z1, . . . , zn)||zi | = 1(1 � i � n)}. Denote by F [x1, . . . , xn]Sn the algebra of
symmetric polynomials in variables x1, . . . , xn. Define an inner product on F [x1, . . . , xn]Sn

by

〈f, g〉�Mac = 1

n!

∫
Tn

f (z)g(z−1)�Mac(z; q, t) dz

with

�Mac(z; q, t) =
∏

1�i<j�n

∣∣∣∣∣
(
ziz

−1
j ; q

)
∞(

tziz
−1
j ; q

)
∞

∣∣∣∣∣
2

,

where z−1 = (
z−1

1 , . . . , z−1
n

)
and (a; q)∞ = ∏∞

r=0(1 − aqr). Here dz is the normalized Haar
measure on Tn.

For a partition λ of length �(λ) � n, put

mA
λ (x1, . . . , xn) =

∑
ν=(ν1,...,νn)∈Snλ

x
ν1
1 · · · xνn

n , (2.1)

where the sum runs over the Sn-orbit Snλ = {(λσ(1), . . . , λσ(n))|σ ∈ Sn}. Here we add
the suffix ‘A’ because Sn is the Weyl group of type A. Then Macdonald polynomials (of
type A) P Mac

λ = P Mac
λ (x1, . . . , xn; q, t) ∈ F [x1, . . . , xn]Sn are characterized by the following

conditions:

P Mac
λ = mA

λ +
∑
µ<Aλ

uλµmA
µ with uλµ ∈ F,

〈
P Mac

λ , P Mac
µ

〉
�Mac = 0 if λ 
= µ.

Denote by �F the F-algebra of symmetric functions in infinitely many variables
x = (x1, x2, . . .). That is, an element f = f (x) ∈ �F is determined by the sequence (fn)n�0

of polynomials fn in F [x1, . . . , xn]Sn , where these polynomials satisfy supn�0 deg(fn) < ∞
and fm(x1, . . . , xn, 0, . . . , 0) = fn(x1, . . . , xn) for any m � n (see [Mac, chapter I-2]).
Macdonald polynomials satisfy the stability property

P Mac
λ (x1, . . . , xn, xn+1; q, t)

∣∣
xn+1=0 = P Mac

λ (x1, . . . , xn; q, t)

for any partition λ of length �(λ) � n, and therefore for all partitions λ, Macdonald functions
P Mac

λ (x; q, t) can be defined.
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For each square s = (i, j) of the diagram λ, let

a(s) = λi − j, a′(s) = j − 1, l(s) = λ′
j − i, l′(s) = i − 1.

These numbers are called the arm length, arm colength, leg length and leg colength,
respectively. Put

cλ(q, t) =
∏
s∈λ

(1 − qa(s)t l(s)+1), c′
λ(q, t) =

∏
s∈λ

(1 − qa(s)+1t l(s)).

Note that cλ(q, t) = c′
λ′(t, q). Defining the Q-function by Qλ(x; q, t) = cλ(q, t)c′

λ(q, t)−1

P Mac
λ (x; q, t), we have the dual Cauchy identity ([Mac, chapter VI (5.4)])∑
λ

P Mac
λ (x; q, t)P Mac

λ′ (y; t, q) =
∑

λ

QMac
λ (x; q, t)QMac

λ′ (y; t, q)

=
∏
i�1

∏
j�1

(1 + xiyj ) = exp

( ∞∑
k=1

(−1)k−1

k
pk(x)pk(y)

)
, (2.2)

where y = (y1, y2, . . .). Here pk is the power-sum function pk(x) = xk
1 + xk

2 + · · ·.
We define the generalized factorial (a)

(q,t)

λ by

(a)
(q,t)

λ =
∏
s∈λ

(t l
′(s) − qa′(s)a).

Let u be an indeterminate and define the homomorphism εu,t from �F to F by

εu,t (pr) = 1 − ur

1 − t r
for all r � 1. (2.3)

In particular, we have εtn,t (f ) = f (1, t, t2, . . . , tn−1) for any f ∈ �F . Then we have ([Mac,
chapter VI (6.17)])

εu,t

(
P Mac

λ

) = (u)
(q,t)

λ

cλ(q, t)
. (2.4)

Finally, the following orthogonality property is satisfied for any two partitions λ and µ of
length � n: 〈

P Mac
λ ,QMac

µ

〉
�Mac = δλµ〈1, 1〉�Mac

∏
s∈λ

1 − qa′(s)tn−l′(s)

1 − qa′(s)+1tn−l′(s)−1
. (2.5)

3. Averages with respect to ∆Mac(z; q, t)

As in the previous section, we assume q and t are real numbers in the interval (−1, 1). For a
Laurent polynomial f in variables z1, . . . , zn, we define

〈f 〉(q,t)
n =

∫
Tn f (z)�Mac(z; q, t) dz∫

Tn �Mac(z; q, t) dz
.

In this section, we calculate averages of the products of the polynomial


A(z; η) =
n∏

j=1

(1 + ηzj ), η ∈ C

with respect to 〈·〉(q,t)
n . Denoting the eigenvalues of a unitary matrix M by z1, . . . , zn, the

polynomial 
A(z; η) is the characteristic polynomial det(I + ηM).
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The following theorems will induce averages of the products of characteristic polynomials
for random matrix ensembles associated with type A root systems (see sections 4 and 6.1–6.3
below).

Theorem 3.1. Let K and L be positive integers. Let η1, . . . , ηL+K be complex numbers such
that ηj 
= 0(1 � j � L). Then we have〈

L∏
l=1


A
(
z−1; η−1

l

) ·
K∏

k=1


A(z; ηL+k)

〉(q,t)

n

= (η1 · · · ηL)−n · P Mac
(nL)

(η1, . . . , ηL+K; t, q).

Proof. By the dual Cauchy identity (2.2), we have
L∏

l=1


A
(
z−1; η−1

l

) ·
K∏

k=1


A(z; ηL+k) =
L∏

l=1

η−n
l · (z1 · · · zn)

−L ·
L+K∏
k=1

n∏
j=1

(1 + ηkzj )

=
L∏

l=1

η−n
l · (z1 · · · zn)

−L
∑

λ

QMac
λ (η1, . . . , ηL+K; t, q)QMac

λ′ (z; q, t).

Therefore, since P Mac
(Ln) (z; q, t) = (z1 · · · zn)

L [Mac, chapter VI (4.17)], we see that〈
L∏

l=1


A
(
z−1; η−1

l

) ·
K∏

k=1


A(z; ηL+k)

〉(q,t)

n

=
L∏

l=1

η−n
l

∑
λ

QMac
λ (η1, . . . , ηL+K; t, q)

〈
QMac

λ′ , P Mac
(Ln)

〉
�Mac

〈1, 1〉�Mac

=
L∏

l=1

η−n
l · QMac

(nL)
(η1, . . . , ηL+K; t, q)

∏
s∈(Ln)

1 − qa′(s)tn−l′(s)

1 − qa′(s)+1tn−l′(s)−1

by the orthogonality property (2.5). It is easy to check that∏
s∈(Ln)

1 − qa′(s)tn−l′(s)

1 − qa′(s)+1tn−l′(s)−1
= c(Ln)(q, t)

c′
(Ln)(q, t)

=
c′
(nL)

(t, q)

c(nL)(t, q)
,

and so we obtain the claim. �
It may be noted that the present proof of theorem 3.1 is similar to the corresponding one

in [BG].

Corollary 3.2. For each positive integer k and ξ ∈ T, we have〈
k−1∏
i=0

|
A(z; qi+1/2ξ)|2
〉(q,t)

n

=
k−1∏
i=0

n−1∏
j=0

1 − qk+i+1t j

1 − qi+1t j
.

Proof. Set L = K = k and ηi
−1 = ηi+k = qi−1/2ξ(1 � i � k) in theorem 3.1. Then we have〈

k−1∏
i=0

|
A(z; qi+1/2ξ)|2
〉(q,t)

n

=
k−1∏
i=0

q(i+1/2)n · P(nk)(q
−k+1/2, q−k+3/2, . . . , q−1/2, q1/2, . . . , qk−1/2; t, q)

= qnk2/2 · q(−k+1/2)knP(nk)(1, q, . . . , q2k−1; t, q)

= q−nk(k−1)/2εq2k ,q (P(nk)(·; t, q)).
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From expression (2.4), the right-hand side of the above expression equals

q−nk(k−1)/2
(q2k)

(t,q)

(nk)

c(nk)(t, q)
= q−nk(k−1)/2

k∏
i=1

n∏
j=1

qi−1 − t j−1q2k

1 − tn−j qk−i+1
=

n−1∏
j=0

k∏
i=1

1 − t j q2k−i+1

1 − t j qk−i+1
,

and the result follows. �

Kaneko [K2] defines the multivariable q-hypergeometric function associated with
Macdonald polynomials by

21
(q,t)(a, b; c; x1, . . . , xn) =

∑
λ

(a)
(q,t)

λ (b)
(q,t)

λ

(c)
(q,t)

λ

P Mac
λ (x1, . . . , xn; q, t)

c′
λ(q, t)

,

where λ runs over all partitions of length �(λ) � n. The q-shifted moment〈∏k−1
i=0 |
A(z; qi+1/2ξ)|2

〉(q,t)

n
given in corollary 3.2 can also be expressed as a special value

of the generalized q-hypergeometric function 21
(q,t) as follows:

Proposition 3.3. For any complex number with |η| < 1 and real number u,〈
n∏

j=1

∣∣∣∣ (ηzj ; q)∞
(ηzju; q)∞

∣∣∣∣2
〉(q,t)

n

= 21
(q,t)(u−1, u−1; qtn−1; (u|η|)2, (u|η|)2t, . . . , (u|η|)2tn−1).

In particular, letting u = qk and η = q1/2ξ with ξ ∈ T, we have〈
k−1∏
i=0

|
A(z; qi+1/2ξ)|2
〉(q,t)

n

= 21
(q,t)(q−k, q−k; qtn−1; q2k+1, q2k+1t, . . . , q2k+1tn−1).

Proof. A simple calculation gives
n∏

j=1

(ηzj ; q)∞
(ηzju; q)∞

= exp

( ∞∑
k=1

(−1)k−1

k

1 − uk

1 − qk
pk(−ηz1, . . . ,−ηzn)

)
.

From expressions (2.2) and (2.3), we have
n∏

j=1

(ηzj ; q)∞
(ηzju; q)∞

=
∑

λ

(−η)|λ|εu,q

(
QMac

λ′ (·; t, q)
)
QMac

λ (z; q, t)

=
∑

λ

(−η)|λ|εu,q

(
P Mac

λ′ (·; t, q)
)
P Mac

λ (z; q, t).

Thus we have
n∏

j=1

∣∣∣∣ (ηzj ; q)∞
(ηzju; q)∞

∣∣∣∣2

=
∑
λ,µ

(−η)|λ|(−η)|µ|εu,q

(
P Mac

λ′ (·; t, q)
)
εu,q

× (
QMac

µ′ (·; t, q)
)
P Mac

λ (z; q, t)QMac
µ (z−1; q, t).

The average is given by〈
n∏

j=1

∣∣∣∣ (ηzj ; q)∞
(ηzju; q)∞

∣∣∣∣2
〉(q,t)

n

=
∑

λ

|η|2|λ|εu,q

(
P Mac

λ′ (·; t, q)
)
εu,q

(
QMac

λ′ (·; t, q)
) 〈

P Mac
λ ,QMac

λ

〉
�Mac

〈1, 1〉�Mac

=
∑

λ

|η|2|λ|
{
(u)

(t,q)

λ′
}2

cλ′(t, q)c′
λ′(t, q)

∏
s∈λ

1 − qa′(s)tn−l′(s)

1 − qa′(s)+1tn−l′(s)−1
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by expression (2.4) and the orthogonality property (2.5). It is easy to check that

(u)
(t,q)

λ′ = (−u)|λ|(u−1)
(q,t)

λ , cλ′(t, q)c′
λ′(t, q) = cλ(q, t)c′

λ(q, t),∏
s∈λ

1 − qa′(s)tn−l′(s)

1 − qa′(s)+1tn−l′(s)−1
=

∏
s∈λ

t l
′(s) − qa′(s)tn

t l
′(s) − qa′(s)+1tn−1

= (tn)
(q,t)

λ

(qtn−1)
(q,t)

λ

.

Finally, we obtain〈
n∏

j=1

∣∣∣∣ (ηzj ; q)∞
(ηzju; q)∞

∣∣∣∣2
〉(q,t)

n

=
∑

λ

(u|η|)2|λ|
{
(u−1)

(q,t)

λ

}2

(qtn−1)
(q,t)

λ

P Mac
λ (1, t, . . . , tn−1; q, t)

c′
λ(q, t)

,

which equals 21
(q,t)(u−1, u−1; qtn−1; (u|η|)2, . . . , (u|η|)2tn−1). �

Now we derive the asymptotic behavior of the moment of |
(z; η)| when |η| < 1 in the
limit as n → ∞. The following theorem is a generalization of the well-known strong Szegö
limit theorem as stated in section 4.2 below.

Theorem 3.4. Let φ(z) = exp
( ∑

k∈Z c(k)zk
)

be a function on T and assume∑
k∈Z

|c(k)| < ∞ and
∑
k∈Z

|k||c(k)|2 < ∞. (3.1)

Then we have

lim
n→∞ e−nc(0)

〈
n∏

j=1

φ(zj )

〉(q,t)

n

= exp

( ∞∑
k=1

kc(k)c(−k)
1 − qk

1 − t k

)
.

Proof. First we see that
n∏

j=1

φ(zj ) = enc(0)

∞∏
k=1

exp(c(k)pk(z)) exp(c(−k)pk(z))

= enc(0)

∞∏
k=1

( ∞∑
a=0

c(k)a

a!
p(ka)(z)

)( ∞∑
b=0

c(−k)b

b!
p(kb)(z)

)

= enc(0)
∑

(1a1 2a2 ···)

∑
(1b1 2b2 ···)

( ∞∏
k=1

c(k)ak c(−k)bk

ak!bk!

)
p(1a1 2a2 ···)(z)p(1b1 2b2 ···)(z),

where both (1a1 2a2 · · ·) and (1b1 2b2 · · ·) run over all partitions. Therefore we have

e−nc(0)

〈
n∏

j=1

φ(zj )

〉(q,t)

n

=
∑

(1a1 2a2 ···)

∑
(1b1 2b2 ···)

( ∞∏
k=1

c(k)ak

ak!

c(−k)bk

bk!

)
〈p(1a1 2a2 ···), p(1b1 2b2 ···)〉�Mac

〈1, 1〉�Mac
.

We recall the asymptotic behavior

〈p(1a1 2a2 ···), p(1b1 2b2 ···)〉�Mac

〈1, 1〉�Mac
−→

∞∏
k=1

δakbk
kak ak!

(
1 − qk

1 − t k

)ak

in the limit as n → ∞ (see [Mac, chapter VI (9.9) and (1.5)]). It follows from this that

lim
n→∞ e−nc(0)

〈
n∏

j=1

φ(zj )

〉(q,t)

n

=
∑

(1a1 2a2 ···)

∞∏
k=1

(kc(k)c(−k))ak

ak!

(
1 − qk

1 − t k

)ak

=
∞∏

k=1

( ∞∑
a=0

(
kc(k)c(−k)

1−qk

1−tk

)a

a!

)
= exp

( ∞∑
k=1

kc(k)c(−k)
1 − qk

1 − t k

)
.
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Here
∑∞

k=1 kc(k)c(−k)
1−qk

1−tk
converges absolutely by the second assumption in (3.1) and the

Cauchy–Schwarz inequality, because
∣∣ 1−qk

1−tk

∣∣ � 1+|q|k
1−|t |k � 1 + |q|. �

Note that the present proof is similar to the corresponding one in [BD]. The result in [BD]
is the special case of theorem 3.4 with q = t . As an example of this theorem, the asymptotic
behavior of the moment of |
A(z; η)| is given as follows. A further asymptotic result is given
by corollary 4.2 below.

Example 3.1. Let γ ∈ R and let η be a complex number such that |η| < 1. Then we have

lim
n→∞〈|
A(z; η)|2γ 〉(q,t)

n =
(

(q|η|2; t)∞
(|η|2; t)∞

)γ 2

.

This result is obtained by applying theorem 3.4 to φ(z) = |1 + ηz|2γ . Then the Fourier
coefficients of log φ are c(k) = (−1)k−1ηkγ /k and c(−k) = (−1)k−1ηkγ /k for k > 0, and
c(0) = 0.

4. Circular ensembles and its q-analogue

4.1. Special case: t = qβ/2

In this subsection, we examine the results of the last section for the special case t = qβ/2

with β > 0, i.e., we consider the weight function �Mac(z; q, qβ/2). Denote by 〈·〉qn,β the
corresponding average. Define the q-gamma function (see, e.g., [AAR, (10.3.3)]) by

�q(x) = (1 − q)1−x (q; q)∞
(qx; q)∞

.

Proposition 4.1. Let β be a positive real number. For a positive integer k and ξ ∈ T, we have〈
k∏

i=1

|
(z; qi−1/2ξ)|2
〉q

n,β

=
k−1∏
i=0

�t

(
2
β
(i + 1)

)
�t

(
n + 2

β
(k + i + 1)

)
�t

(
2
β
(k + i + 1)

)
�t

(
n + 2

β
(i + 1)

) (with t = qβ/2)

=
n−1∏
j=0

�q

(
β

2 j + 2k + 1
)
�q

(
β

2 j + 1
)

�q

(
β

2 j + k + 1
)2 . (4.1)

Proof. The claim follows immediately from corollary 3.2 and the functional equation
�q(1 + x) = 1−qx

1−q
�q(x). �

Consider now the asymptotic behavior of this average in the limit as n → ∞. Put [n]q =
(1 − qn)/(1 − q).

Corollary 4.2. For a positive integer k and ξ ∈ T, it holds that

lim
n→∞([n]t )

−2k2/β

〈
k∏

i=1

|
(z; qi−1/2ξ)|2
〉q

n,β

=
k−1∏
i=0

�t

(
2
β
(i + 1)

)
�t

(
2
β
(k + i + 1)

) with t = qβ/2.

(4.2)

Proof. Verify that

lim
n→∞

�t(n + a)

�t (n)([n]t )a
= 1 (4.3)

for any constant a. Then the claim is clear from expression (4.1). �
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Example 4.1. Denote by Fq

β(k) the right-hand side of equation (4.2). Then we obtain

Fq

1 (k) =
k−1∏
j=0

[2j + 1]
q

1
2
!

[2k + 2j + 1]
q

1
2
!
, (4.4)

Fq

2 (k) =
k−1∏
j=0

[j ]q!

[j + k]q!
, (4.5)

Fq

4 (2k) = ([2]q)2k2

[2k − 1]q!!

2k−1∏
j=1

[j ]q!

[2j ]q!
. (4.6)

Here [n]q! = [n]q[n−1]q · · · [1]q and [2k−1]q!! = [2k−1]q[2k−3]q · · · [3]q[1]q . Equalities
(4.4) and (4.5) are trivial because �q(n + 1) = [n]q!. We check relation (4.6). By definition,
we have

Fq

4 (2k) =
2k−1∏
i=0

�q2

(
1
2 (i + 1)

)
�q2

(
k + 1

2 (i + 1)
) =

k−1∏
p=0

�q2

(
p + 1

2

)
�q2(p + 1)

�q2

(
k + p + 1

2

)
�q2(k + p + 1)

.

Using the q-analogue of the Legendre duplication formula (see, e.g., [AAR, theorem 10.3.5(a)])

�q(2x)�q2(1/2) = (1 + q)2x−1�q2(x)�q2(x + 1/2),

we have

Fq

4 (2k) =
k−1∏
p=0

(1 + q)2k�q(2p + 1)

�q(2k + 2p + 1)
= ([2]q)

2k2
k−1∏
p=0

[2p]q!

[2k + 2p]q!
.

Expression (4.6) can then be proven by induction on n.

4.2. Circular β-ensembles and Jack polynomials

We take the limit as q → 1 of the results of the previous subsection. Recall the formula

lim
q→1

(qax; q)∞
(x; q)∞

= (1 − x)−a

for |x| < 1 and a ∈ R (see [AAR, theorem 10.2.4] for example). Then we have

lim
q→1

�Mac(z; q, qβ/2) =
∏

1�i<j�n

|zi − zj |β =: �Jack(z; 2/β),

which is a constant times the pdf for Dyson’s circular β-ensembles (see section 6). Denote by
〈·〉n,β the corresponding average, i.e., for a function f on Tn define

〈f 〉n,β = lim
q→1

〈f 〉qn,β =
∫

Tn f (z)
∏

1�i<j�n |zi − zj |β dz∫
Tn

∏
1�i<j�n |zi − zj |β dz

.

Let α > 0. The Jack polynomial P Jack
λ (x1, . . . , xn;α) for each partition λ is defined by

the limit approached by the corresponding Macdonald polynomial,

P Jack
λ (x1, . . . , xn;α) = lim

q→1
P Mac

λ (x1, . . . , xn; q, q1/α)

(see [Mac, chapter VI-10] for detail). Jack polynomials are orthogonal polynomials with
respect to the weight function �Jack(z;α). In particular, sλ(x1, . . . , xn) = P Jack

λ (x1, . . . , xn; 1)

are called Schur polynomials and are irreducible characters of U(n) associated with λ.
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From the theorems in the last section, we have the following: from theorem 3.1, we see
that〈

L∏
l=1


A(z−1; η−1
l ) ·

K∏
k=1


A(z; ηL+k)

〉
n,β

= (η1 · · · ηL)−n · P Jack
(nL)

(η1, . . . , ηL+K;β/2). (4.7)

For a positive real number γ and complex number η with |η| < 1, we have from
proposition 3.3 that

〈|
(z; η)|2γ 〉n,CβE = 2F1
(2/β)

(
−γ,−γ ; β

2
(n − 1) + 1; |η|2, . . . , |η|2

)
, (4.8)

where 2F1
(α)(a, b; c; x1, . . . , xn) is the hypergeometric function associated with Jack

polynomials [K1] defined by

2F1
(α)(a, b; c; x1, . . . , xn) =

∑
λ

[a](α)
λ [b](α)

λ

[c](α)
λ

α|λ|P Jack
λ (x1, . . . , xn;α)

c′
λ(α)

with

[u](α)
λ =

∏
s∈λ

(u − l′(s)/α + a′(s)) and c′
λ(α) =

∏
s∈λ

(α(a(s) + 1) + l(s)).

For a positive integer k, and ξ ∈ T, by theorem 4.1 and corollary 4.2 it holds that

〈|
A(z; ξ)|2k〉n,β =
k−1∏
i=0

�
(

2
β
(i + 1)

)
�

(
n + 2

β
(k + i + 1)

)
�

(
2
β
(k + i + 1)

)
�

(
n + 2

β
(i + 1)

) ∼
k−1∏
i=0

�
(

2
β
(i + 1)

)
�

(
2
β
(k + i + 1)

) · n2k2/β

(4.9)

in the limit as n → ∞. For a function φ(z) = exp
(∑

k∈Z c(k)zk
)

on T satisfying inequalities
(3.1), by theorem 3.4 it holds that

lim
n→∞ e−nc(0)

〈
n∏

j=1

φ(zj )

〉
n,β

= exp

(
2

β

∞∑
k=1

kc(k)c(−k)

)
. (4.10)

In particular, for γ ∈ R and a complex number η such that |η| < 1, we have

lim
n→∞〈|
A(z; η)|2γ 〉n,β = (1 − |η|2)−2γ 2/β .

Several observations may be made concerning the above identities: equation (4.8) is
obtained by verifying the limits

lim
t→1

(qa)
(q,t)

λ

(1 − t)|λ| = α|λ|[a](α)
λ , lim

t→1

c′
λ(q, t)

(1 − t)|λ| = c′
λ(α),

with q = tα . The expression for the moment is obtained in [FK] using a different proof, which
employs a Selberg type integral evaluation. Equation (4.9) is also obtained in [KS1] essentially
by the Selberg integral evaluation. When β = 2, equation (4.10) presents the strong Szegö
limit theorem for a Toeplitz determinant. Indeed, the average of the left-hand side of (4.10) is
then equal to the Toeplitz determinant det(di−j )1�i,j�n of φ, where di are Fourier coefficients
of φ. Equation (4.10) with general β > 0 is seen in [J1, J2], but it may be noted that the
present proof, employing symmetric function theory, is straightforward. This expression is
applied in [Mat] in order to observe an asymptotic behavior for Toeplitz ‘hyperdeterminants’.
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5. Jacobi polynomials due to Heckman and Opdam

The results obtained in sections 3 and 4 will be applied to random matrix polynomials from
symmetric spaces of the type A root system in the following section. In order to evaluate the
corresponding polynomials of the BC type root system, we here recall Heckman and Opdam’s
Jacobi polynomials and give some identities corresponding to (4.7) and (4.9).

The dominance ordering associated with the root system of type BC is defined as follows:
for two partitions λ = (λ1, λ2, . . .) and µ = (µ1, µ2, . . .),

µ � λ ⇔ µ1 + · · · + µi � λ1 + · · · + λi for all i � 1.

Let C[x±1] = C
[
x±1

1 , . . . , x±1
n

]
be the ring of all Laurent polynomials in n variables

x = (x1, . . . , xn). The Weyl group W = Z2  Sn = Zn
2 � Sn of type BCn acts naturally on

Zn and C[x±1], respectively. Denote by C[x±1]W the subring of all W -invariants in C[x±1].
Let �HO(z; k1, k2, k3) be a function on Tn defined by

�HO(z; k1, k2, k3) =
∏

1�i<j�n

∣∣1 − ziz
−1
j

∣∣2k3 |1 − zizj |2k3 ·
∏

1�j�n

|1 − zj |2k1
∣∣1 − z2

j

∣∣2k2
.

Here we assume k1, k2 and k3 are real numbers such that

k1 + k2 > −1/2, k2 > −1/2, k3 � 0.

Define an inner product on C[x±1]W by

〈f, g〉�HO = 1

2nn!

∫
Tn

f (z)g(z−1)�HO(z; k1, k2, k3) dz.

For each partition µ, we let

mBC
µ (x) =

∑
ν∈Wµ

x
ν1
1 · · · xνn

n ,

where Wµ is the W -orbit of µ (cf (2.1)). These polynomials form a C-basis of C[x±1]W .
Then, there exists a unique family of polynomials P HO

λ = P HO
λ (x; k1, k2, k3) ∈ C[x±1]W

(λ are partitions such that �(λ) � n) satisfying two conditions:

P HO
λ (x) = mBC

λ (x) +
∑

µ:µ<λ

uλµmBC
µ (x), with uλµ ∈ C,

〈
P HO

λ , P HO
µ

〉
�HO = 0 if λ 
= µ.

The Laurent polynomials Pλ are known as Jacobi polynomials associated with the root system
of type BCn due to Heckman and Opdam (see, e.g., [Di, HS, Mi]). They can be seen as
BC-analogues of Jack polynomials.

For a function f on Tn, we denote by 〈f 〉k1,k2,k3
n the mean value of f with respect to the

weight function �HO(z; k1, k2, k3):

〈f 〉k1,k2,k3
n =

∫
Tn f (z)�HO(z; k1, k2, k3) dz∫

Tn �HO(z; k1, k2, k3) dz
.

From the three parameters k1, k2, k3, we define new parameters

k̃1 = k1/k3, k̃2 = (k2 + 1)/k3 − 1, k̃3 = 1/k3.

Put


BC(z; x) =
n∏

j=1

(1 + xzj )
(
1 + xz−1

j

)
.
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Theorem 5.1. The following relation holds

〈
BC(z; x1)

BC(z; x2) · · · 
BC(z; xm)〉k1,k2,k3

n = (x1 · · · xm)nP HO
(nm)(x1, . . . , xm; k̃1, k̃2, k̃3).

(5.1)

In order to prove this, we need the following dual Cauchy identity obtained by Mimachi
[Mi].

Proposition 5.2 ([Mi]). Let x = (x1, . . . , xn) and y = (y1, . . . , ym) be sequences of
indeterminates. Jacobi polynomials P HO

λ satisfy the equality

n∏
i=1

m∏
j=1

(
xi + x−1

i − yj − y−1
j

) =
∑

λ⊂(mn)

(−1)|λ̃|P HO
λ (x; k1, k2, k3)P

HO
λ̃

(y; k̃1, k̃2, k̃3),

where λ̃ = (n − λ′
m, n − λ′

m−1, . . . , n − λ′
1).

Proof of theorem 5.1. We see that


BC(z; x1)

BC(z; x2) · · · 
BC(z; xm) = (x1 · · · xm)n

m∏
i=1

n∏
j=1

(
xi + x−1

i + zj + z−1
j

)
.

Using proposition 5.2 we have

〈
BC(z; x1)

BC(z; x2) · · · 
BC(z; xm)〉k1,k2,k3

n

= (x1 · · · xm)n
∑

λ⊂(mn)

P HO
λ̃

(x1, . . . , xm; k̃1, k̃2, k̃3)
〈
P HO

λ (z; k1, k2, k3)
〉k1,k2,k3

n
.

By the orthogonality relation for Jacobi polynomials, we have

〈
P HO

λ (z; k1, k2, k3)
〉k1,k2,k3

n
=

{
1, if λ = (0),

0, otherwise,

and we thus obtain the theorem. �

Remark 5.1. Using theorem 2.1 in [Mi], we derive a more general form of equation (5.1)
including a Macdonald–Koornwinder polynomial.

Theorem 5.3. Let

F(m; k1, k2, k3) =
m−1∏
j=0

√
π

2k1+2k2+jk3−1�
(
k1 + k2 + 1

2 + jk3
) .

The mth moment of 
BC(z; 1) is given by

〈
BC(z; 1)m〉k1,k2,k3
n = F(m; k̃1, k̃2, k̃3) ·

m−1∏
j=0

�(n + k̃1 + 2k̃2 + j k̃3)�
(
n + k̃1 + k̃2 + 1

2 + j k̃3
)

�
(
n + k̃1

2 + k̃2 + j k̃3

2

)
�

(
n + k̃1

2 + k̃2 + 1+j k̃3

2

) .

Proof. By theorem 5.1 we have

〈
BC(z; 1)m〉k1,k2,k3
n = P HO

(nm)(1
m; k̃1, k̃2, k̃3). (5.2)
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The special case P HO
λ (1, 1, . . . , 1; k1, k2, k3) is known and is given as follows (see, e.g., [Di]):2

for a partition λ of length � m,

P HO
λ (1, . . . , 1︸ ︷︷ ︸

m

; k1, k2, k3) = 22|λ| ∏
1�i<j�m

(ρi + ρj + k3)λi+λj
(ρi − ρj + k3)λi−λj

(ρi + ρj )λi+λj
(ρi − ρj )λi−λj

×
m∏

j=1

(
k1
2 + k2 + ρj

)
λj

(
k1+1

2 + ρj

)
λj

(2ρj )2λj

with ρj = (m − j)k3 + k1
2 + k2. Here (a)n = �(a + n)/�(a) is the Pochhammer symbol.

Substituting (nm) for λ, we have

P HO
(nm)(1

m; k1, k2, k3) =
∏

1�i<j�m

(k1 + 2k2 + (2m − i − j + 1)k3)2n

(k1 + 2k2 + (2m − i − j)k3)2n

·

×
m−1∏
j=0

22n(k1 + 2k2 + jk3)n
(
k1 + k2 + 1

2 + jk3
)
n

(k1 + 2k2 + 2jk3)2n

. (5.3)

A simple algebraic manipulation of the first product on the right-hand side of (5.3) yields

∏
1�i<j�m

(k1 + 2k2 + (2m − i − j + 1)k3)2n

(k1 + 2k2 + (2m − i − j)k3)2n

=
m−1∏
j=0

(k1 + 2k2 + 2jk3)2n

(k1 + 2k2 + jk3)2n

and therefore we obtain

P HO
(nm)(1

m; k1, k2, k3) =
m−1∏
j=0

22n
(
k1 + k2 + 1

2 + jk3
)
n

(n + k1 + 2k2 + jk3)n
.

Combining the above result with equation (5.2), we have

〈
BC(z; 1)m〉k1,k2,k3
n =

m−1∏
j=0

22n�(n + k̃1 + 2k̃2 + j k̃3)�
(
n + k̃1 + k̃2 + 1

2 + j k̃3
)

�
(
k̃1 + k̃2 + 1

2 + j k̃3
)
�(2n + k̃1 + 2k̃2 + j k̃3)

. (5.4)

Finally, we apply the formula

�(2a) = 22a−1

√
π

�(a)�

(
a +

1

2

)

to �(2n + k̃1 + 2k̃2 + j k̃3) in equation (5.4) and we then have the theorem. �

Corollary 5.4. It holds that

〈
BC(z; 1)m〉k1,k2,k3
n ∼ F(m; k̃1, k̃2, k̃3) · nm(k̃1+k̃2)+ 1

2 m(m−1)k̃3 ,

as n → ∞.

Proof. The claim follows from the previous theorem and the asymptotics of the gamma
function (cf (4.3)): �(n + a) ∼ �(n)na for a constant a. �
2 The connection between ours notation and van Diejen’s [Di] is given by ν0 = k1 + k2, ν1 = k2, ν = k3.
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6. Random matrix ensembles associated with compact symmetric spaces

Finally, we apply the theorems obtained above to compact symmetric spaces as classified by
Cartan. These symmetric spaces are labeled A I, BD I, C II and so on (see, e.g., table 1 in
[CM]). Let G/K be such a compact symmetric space. Here G is a compact subgroup of
GL(N, C) for some positive integer N and K is a closed subgroup of G. Then the space G/K

is realized as the subset S of G: S � G/K and the probability measure dM on S is induced
from the quotient space G/K . We consider S as a probability space with the measure dM and
call the random matrix ensemble associated with G/K . See [Du] for details.

The random matrix ensembles considered in sections 6.1–6.3 are called Dyson’s circular
β-ensembles (see [Dy, Me]). The identities in these subsections follow immediately from
expressions (4.7) and (4.9) (see also example 4.1). Similarly, identities after section 6.4
follows from theorem 5.1, theorem 5.3 and corollary 5.4.

Note that the results in sections 6.1 and 6.4–6.6 are results for compact Lie groups (which
are not proper symmetric spaces) previously presented in [BG].

6.1. U(n)—type A

Consider the unitary group U(n) with the normalized Haar measure. This space has a simple
root system of type A. The corresponding pdf for eigenvalues z1, . . . , zn of M ∈ U(n)

is proportional to �Jack(z; 1). This random matrix ensemble is called the circular unitary
ensemble (CUE).

For complex numbers η1, . . . , ηL, ηL+1, . . . , ηL+K , it follows from equation (4.7) that〈
L∏

i=1

det
(
I + η−1

i M−1
) ·

K∏
i=1

det(I + ηL+iM)

〉
U(n)

=
〈

L∏
i=1


A
(
z−1; η−1

i

) ·
K∏

i=1


A(z; ηL+i )

〉
n,2

=
L∏

i=1

η−n
i · s(nL)(η1, . . . , ηL+K).

In addition, from equation (4.9) we obtain

〈| det(I + ξM)|2m〉U(n) =
m−1∏
j=0

j !(n + j + m)!

(j + m)!(n + j)!
∼

m−1∏
j=0

j !

(j + m)!
· nm2

for any ξ ∈ T.

6.2. U(n)/O(n)—type A I

Consider the ensemble S(n) associated with the symmetric space U(n)/O(n). The space S(n)

is the set of all symmetric matrices in U(n). The corresponding pdf for eigenvalues z1, . . . , zn

is proportional to �Jack(z; 2) = ∏
1�i<j�n |zi − zj |. This random matrix ensemble is called

the COE. We have〈
L∏

i=1

det
(
I + η−1

i M−1
) ·

K∏
i=1

det(I + ηL+iM)

〉
S(n)

=
〈

L∏
i=1


A
(
z−1; η−1

i

) ·
K∏

i=1


A(z; ηL+i )

〉
n,1

=
L∏

i=1

η−n
i · P Jack

(nL)
(η1, . . . , ηL+K; 1/2).
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For ξ ∈ T, we obtain

〈|det(I + ξM)|2m〉S(n) =
m−1∏
j=0

(2j + 1)!(n + 2m + 2j + 1)!

(2m + 2j + 1)!(n + 2j + 1)!
∼

m−1∏
j=0

(2j + 1)!

(2m + 2j + 1)!
· n2m2

.

6.3. U(2n)/Sp(2n)—type A II

Consider the ensemble S(n) associated with the symmetric space U(2n)/Sp(2n). The space
S(n) is the set of all self-dual matrices in U(2n), i.e., M ∈ S(n) is a unitary matrix satisfying

M = JMTJ T with J = (
0 In−In 0

)
. This random matrix ensemble is called the circular symplectic

ensemble (CSE). The eigenvalues of M ∈ S(n) are of the form z1, z1, z2, z2, . . . , zn, zn and so
the characteristic polynomial is given as det(I + xM) = ∏n

j=1(1 + xzj )
2. The corresponding

pdf for z1, . . . , zn is proportional to �Jack(z; 1/2) = ∏
1�i<j�n |zi − zj |4. We have〈

L∏
i=1

det
(
I + η−1

i M−1
)1/2 ·

K∏
i=1

det(I + ηL+iM)1/2

〉
S(n)

=
〈

L∏
i=1


A
(
z−1; η−1

i

) ·
K∏

i=1


A(z; ηL+i )

〉
n,4

=
L∏

i=1

η−n
i · P Jack

(nL)
(η1, . . . , ηL+K; 2).

For ξ ∈ T, we obtain

〈|det(I + ξM)|2m〉S(n) =
2m−1∏
j=0

�
(

j+1
2

)
�

(
n + m + j+1

2

)
�

(
m + j+1

2

)
�(n + j+1

2 )
∼ 2m

(2m − 1)!!
∏2m−1

j=1 (2j − 1)!!
· n2m2

.

6.4. SO(2n + 1)—type B

Consider the special orthogonal group SO(2n + 1). An element M in SO(2n + 1) is an
orthogonal matrix in SL(2n + 1, R), with eigenvalues given by z1, z

−1
1 , . . . , zn, z

−1
n , 1.

From Weyl’s integral formula, the corresponding pdf of z1, z2, . . . , zn is proportional to
�HO(z; 1, 0, 1), and therefore it follows from theorem 5.1 that〈

m∏
i=1

det(I + xiM)

〉
SO(2n+1)

=
m∏

i=1

(1 + xi) ·
〈

m∏
i=1


BC(z; xi)

〉1,0,1

n

=
m∏

i=1

xn
i (1 + xi) · P HO

(nm)(x1, . . . , xm; 1, 0, 1).

Here P HO
λ (x1, . . . , xm; 1, 0, 1) is just the irreducible character of SO(2m + 1) associated with

the partition λ. Theorem 5.3, corollary 5.4 and a simple calculation lead to

〈det(I + M)m〉SO(2n+1) = 2m

m−1∏
j=0

�(2n + 2j + 2)

2j (2j + 1)!!�(2n + j + 1)
∼ 22m∏m

j=1(2j − 1)!!
nm2/2+m/2

in the limit as n → ∞.
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6.5. Sp(2n)—type C

Consider the symplectic group Sp(2n), i.e., a matrix M ∈ Sp(2n) belongs to U(2n) and

satisfies MJMT = J , where J = (
On In−In On

)
. The eigenvalues are given by z1, z

−1
1 , . . . , zn, z

−1
n .

The corresponding pdf of z1, z2, . . . , zn is proportional to �HO(z; 0, 1, 1) and therefore we
have〈

m∏
i=1

det(I + xiM)

〉
Sp(2n)

=
〈

m∏
i=1


BC(z; xi)

〉0,1,1

n

=
m∏

i=1

xn
i · P HO

(nm)(x1, . . . , xm; 0, 1, 1).

Here P HO
λ (x1, . . . , xm; 0, 1, 1) is just the irreducible character of Sp(2m) associated with the

partition λ. We obtain

〈det(I + M)m〉Sp(2n) =
m−1∏
j=0

�(2n + 2j + 3)

2j+1 · (2j + 1)!!�(2n + j + 2)
∼ 1∏m

j=1(2j − 1)!!
· nm2/2+m/2.

6.6. SO(2n)—type D

Consider the special orthogonal group SO(2n). The eigenvalues of a matrix M ∈ SO(2n) are
of the form z1, z

−1
1 , . . . , zn, z

−1
n . The corresponding pdf of z1, z2, . . . , zn is proportional to

�HO(z; 0, 0, 1) and therefore we have〈
m∏

i=1

det(I + xiM)

〉
SO(2n)

=
〈

m∏
i=1


BC(z; xi)

〉0,0,1

n

=
m∏

i=1

xn
i · P HO

(nm)(x1, . . . , xm; 0, 0, 1).

Here P HO
λ (x1, . . . , xm; 0, 0, 1) is just the irreducible character of O(2m) (not SO(2m))

associated with the partition λ. We have

〈det(I + M)m〉SO(2n) =
m−1∏
j=0

�(2n + 2j)

2j−1(2j − 1)!!�(2n + j)
∼ 2m∏m−1

j=1 (2j − 1)!!
· nm2/2−m/2.

6.7. U(2n + r)/(U(n + r) × U(n))—type A III

Let r be a non-negative integer. Consider the random matrix ensemble G(n, r) associated with
U(2n + r)/(U(n + r) × U(n)). The explicit expression of a matrix in G(n, r) is omitted here,
but may be found in [Du]. The eigenvalues of a matrix M ∈ G(n, r) ⊂ U(2n + r) are of the
form

z1, z
−1
1 , . . . , zn, z

−1
n , 1, 1, . . . , 1︸ ︷︷ ︸

r

. (6.1)

The corresponding pdf of z1, z2, . . . , zn is proportional to �HO
(
z; r, 1

2 , 1
)

and therefore we
have〈

m∏
i=1

det(I + xiM)

〉
G(n,r)

=
m∏

i=1

(1 + xi)
r ·

〈
m∏

i=1


BC(z; xi)

〉r, 1
2 ,1

n

=
m∏

i=1

(1 + xi)
rxn

i · P HO
(nm)

(
x1, . . . , xm; r,

1

2
, 1

)
.
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We obtain

〈det(I + M)m〉G(n,r) = 2mr〈
BC(z; 1)〉r,
1
2 ,1

n

= πm/2∏m−1
j=0 2j (r + j)!

m−1∏
j=0

�(n + r + j + 1)2

�
(
n + r+j+1

2

)
�

(
n + r+j

2 + 1
)

∼ πm/2

2m(m−1)/2
∏m−1

j=0 (r + j)!
· nm2/2+rm.

6.8. O(2n + r)/(O(n + r) × O(n))—type BD I

Let r be a non-negative integer. Consider the random matrix ensemble G(n, r) associated with
the compact symmetric space O(2n + r)/(O(n + r) × O(n)). The eigenvalues of a matrix
M ∈ G(n, r) ⊂ O(2n + r) are of the form (6.1). The corresponding pdf of z1, z2, . . . , zn is
proportional to �HO

(
z; r

2 , 0, 1
2

)
and therefore we have〈

m∏
i=1

det(I + xiM)

〉
G(n,r)

=
m∏

i=1

(1 + xi)
r ·

〈
m∏

i=1


BC(z; xi)

〉 r
2 ,0, 1

2

n

=
m∏

i=1

(1 + xi)
rxn

i · P HO
(nm)(x1, . . . , xm; r, 1, 2).

We obtain

〈det(I + M)m〉G(n,r) = 2mr

m−1∏
j=0

�(2n + 4j + 2r + 3)

22j+r+1(4j + 2r + 1)!!�(2n + 2j + r + 2)

∼ 2mr∏m−1
j=0 (4j + 2r + 1)!!

· nm2+rm.

6.9. Sp(2n)/U(n)—type C I

Consider the random matrix ensemble S(n) associated with the compact symmetric space
Sp(2n)/(Sp(2n) ∩ SO(2n)) � Sp(2n)/U(n). The eigenvalues of a matrix M ∈ S(n) ⊂
Sp(2n) are of the form z1, z

−1
1 , . . . , zn, z

−1
n . The corresponding pdf of z1, z2, . . . , zn is

proportional to �HO
(
z; 0, 1

2 , 1
2

)
and therefore we have〈

m∏
i=1

det(I + xiM)

〉
S(n)

=
〈

m∏
i=1


BC(z; xi)

〉0, 1
2 , 1

2

n

=
m∏

i=1

xn
i · P HO

(nm)(x1, . . . , xm; 0, 2, 2).

We obtain

〈det(I + M)m〉S(n) =
m−1∏
j=0

(n + 2j + 3)�(2n + 4j + 5)

22j+2(4j + 3)!!�(2n + 2j + 4)
∼ 1

2m
∏m

j=1(4j − 1)!!
· nm2+m.

6.10. Sp(4n + 2r)/(Sp(2n + 2r) × Sp(2n))—type C II

Let r be a non-negative integer. Consider the random matrix ensemble G(n, r) associated
with the compact symmetric space Sp(4n + 2r)/(Sp(2n + 2r) × Sp(2n)). The eigenvalues of
a matrix M ∈ G(n, r) ⊂ Sp(4n + 2r) are of the form

z1, z1, z
−1
1 , z−1

1 , . . . , zn, zn, z
−1
n , z−1

n , 1, . . . , 1︸ ︷︷ ︸
2r

.



13584 S Matsumoto

The corresponding pdf of z1, z2, . . . , zn is proportional to �HO
(
z; 2r, 3

2 , 2
)

and therefore we
have 〈

m∏
i=1

det(I + xiM)1/2

〉
G(n,r)

=
m∏

i=1

(1 + xi)
r

〈
m∏

i=1


BC(z; xi)

〉2r, 3
2 ,2

n

=
m∏

i=1

(1 + xi)
rxn

i · P HO
(nm)

(
x1, . . . , xm; r,

1

4
,

1

2

)
.

We obtain

〈det(I + M)m〉G(n,r) = 24mr+m2+m∏m−1
j=0 (4j + 4r + 1)!!

·
∏4m

p=1 �
(
n + r + p+1

4

)
∏2m

j=1 �
(
n + r

2 + j

4

)
�

(
n + r+1

2 + j

4

)
∼ 24mr+m2+m∏m−1

j=0 (4j + 4r + 1)!!
nm2+2mr .

6.11. SO(4n + 2)/U(2n + 1)—type D III-odd

Consider the random matrix ensemble S(n) associated with the compact symmetric space
SO(4n + 2)/(SO(4n + 2) ∩ Sp(4n + 2)) � SO(4n + 2)/U(2n + 1). The eigenvalues of a
matrix M ∈ S(n) ⊂ SO(4n + 2) are of the form z1, z1, z

−1
1 , z−1

1 , . . . , zn, zn, z
−1
n , z−1

n , 1, 1.
The corresponding pdf of z1, z2, . . . , zn is proportional to �HO

(
z; 2, 1

2 , 2
)

and therefore we
have 〈

m∏
i=1

det(I + xiM)1/2

〉
S(n)

=
m∏

i=1

(1 + xi)

〈
m∏

i=1


BC(z; xi)

〉2, 1
2 ,2

n

=
m∏

i=1

(1 + xi)x
n
i · P HO

(nm)

(
x1, . . . , xm; 1,−1

4
,

1

2

)
.

We obtain

〈det(I + M)m〉S(n) = 2m2+5m∏m
j=1(4j − 1)!!

·
2m∏
j=1

�
(
n + j

2 + 3
4

)
�

(
n + j

2

)
�

(
n + j

4

)
�

(
n + j

4 + 1
2

) ∼ 2m2+5m∏m
j=1(4j − 1)!!

· nm2+m.

6.12. SO(4n)/U(2n)—type D III-even

Consider the random matrix ensembles S(n) associated with the compact symmetric space
SO(4n)/(SO(4n) ∩ Sp(4n)) � SO(4n)/U(2n). The eigenvalues of the matrix M ∈ S(n) ⊂
SO(4n) are of the form

z1, z1, z
−1
1 , z−1

1 , . . . , zn, zn, z
−1
n , z−1

n .

The corresponding pdf of z1, z2, . . . , zn is proportional to �HO
(
z; 0, 1

2 , 2
)

and therefore we
have〈

m∏
i=1

det(I + xiM)1/2

〉
S(n)

=
〈

m∏
i=1


BC(z; xi)

〉0, 1
2 ,2

n

= P HO
(nm)

(
x1, . . . , xm; 0,−1

4
,

1

2

)
.
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Hence we obtain

〈det(I + M)m〉S(n) = 2m2+m∏m−1
j=1 (4j − 1)!!

·
2m−1∏
j=0

�
(
n + j

2 + 1
4

)
�

(
n + j−1

2

)
�

(
n + j−1

4

)
�

(
n + j+1

4

)
∼ 2m2+m∏m−1

j=1 (4j − 1)!!
· nm2−m.

7. Final comments

We have calculated the average of products of the characteristic moments
〈 ∏m

j=1 det(I +xjM)
〉
.

We would also like to calculate the average of the quotient〈∏m
j=1 det(I + xjM)∏l
i=1 det(I + yiM)

〉k1,k2,k3

n

.

Expressions for these quotients have been obtained for the classical groups (i.e., (k1, k2, k3) =
(1, 0, 1), (0, 1, 1), (0, 0, 1) in our notation) in [BG], but the derivation of expressions for other
cases remains an open problem.
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